HISSAN CENTRAL EXAMINATION - 2080 (2024)

Grade: XII F.M.: 75

Time: 3 hrs

COM. MATHEMATICS (0081 M2)

Candidates are required to give their answers in their own words as far as practicable.

Attempt ALL Questions.

GROUP A

 $\lceil 11 \times 1 = 11 \rceil$

Rewrite the correct options of each questions in your answer sheet.

- 1. The $(k+1)^{th}$ the term of $(x+y)^n$ is ...
- a) $\binom{n}{k} x^{n-k} y^{n-k}$ b) $\binom{n}{k} x^k y^k$ c) $\binom{n}{k} (xy)^{n-k}$ d) $\binom{n}{k} x^{n-k} y^k$
- 2. Which one of the following is the Euler's form of 2i?

- b) $2e^{\frac{i\pi}{3}}$ c) $2e^{\frac{i\pi}{2}}$ d) $2e^{\frac{-i\pi}{2}}$
- 3. If $b \cos B = c \cos C$ in a triangle ABC then the triangle is.
 - a) right angled
- b) equiangular c) acute angle
- d) obtuse angle
- 4. In a conic section has equation $\frac{x^2}{a^2} \frac{y^2}{h^2} = -1$ then the eccentricity is
 - a) $\sqrt{1 \frac{b^2}{a^2}}$ b) $\sqrt{1 \frac{a^2}{b^2}}$ c) $\sqrt{1 + \frac{b^2}{a^2}}$ d) $\sqrt{1 + \frac{a^2}{b^2}}$
- 5. Let $\vec{p} \times \vec{q} = \vec{r} \times \vec{s}$ and $\vec{p} \times \vec{r} = \vec{q} \times \vec{s}$. Which one of the following is parallel to($\vec{q} - \vec{r}$)?
 - a) $(\vec{p} \vec{q})$ b) $(\vec{p} \vec{r})$ c) $(\vec{p} \vec{s})$ d) $(\vec{r} \vec{s})$
- 6. If P(A) = 0.4, P(B) = 0.32 and P(B/A) = 0.5, which one of the following is P(A/B)?
- a) $\frac{2}{5}$ b) $\frac{8}{25}$ c) $\frac{3}{8}$ d) $\frac{5}{8}$
- 7. What is the derivation of $\operatorname{cosech}^{-1} x$?
- a) $\frac{1}{r\sqrt{r^2+1}}$ b) $-\frac{x}{\sqrt{r^2+1}}$ c) $-\frac{1}{r\sqrt{r^2+1}}$ d) $\frac{1}{r\sqrt{r^2-1}}$
- 8. Which one of following is equal to $\lim_{x\to 0} \frac{x-\sin x}{x^3}$?

 a) 0 b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{6}$

- 9. Which one of following is the angle made by the tangent to curve y(x-2) - (x-3) = 0 at the point on x axis?
- b) $\frac{\pi}{2}$ c) $\frac{3\pi}{2}$ d) $\frac{5\pi}{6}$

10. Which one of following order of the differential equation

$$\frac{d^3y}{dx^3} - \left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4?$$
a) 1 b) 2

- c) 3
- 11. The system of linear equations 2x + 3y = 15 and 4x + 6y = 30 has...
 - a) No solution
- b) Infinitely many solutions
- c) One solution
- d) More than one solutions but finite

OR

An automobile of mass of 1000kg is brought to rest by applying a breaking force of 2500 N. Which one of the following retardation.

- a) $2.5 \text{ cm/s}^2 \text{ b}) 2.5 \text{ m/s}^2$
- c) 2.5 m/s
- d) -2.5 m/s^2

GROUP B

 $[8 \times 5 = 40]$

[1]

- 12. $(a + x)^n = C(n,0) a^n + C(n,1) a^{n-1} x + ... + C(n,n-1) a x^{n-1} + C(n,n) x^n$
 - a) How many terms are there in expansion?
 - b) Write the general term of the expansion. [1]
 - Write the binomial coefficients. [1]
 - d) If a = 1, write the above binomial in the expansion form. [1]
 - when n is even in above expansion, write its middle term. [1]
- 13. a) If $Z = \cos \theta + i \sin \theta$, find the value of $z^{n} + z^{-n}$ [2]
 - b) Solve the following system of equation by using matrix method [3] 5x + 3y = 27, 3x - 2z = -1, y + 2z = 14
- 14. a) If $(a^2 + b^2) \sin (A B) = (a^2 b^2)$. sin (A + B), prove that the triangle ABC is right angled isosceles triangle. [2]
 - b) Find the equation of the parabola whose focus is at the point (2, 3) and the directrix is 3x + 4y - 5 = 0.
- 15. a) A helicopter is flying horizontally at height of 7 km with a velocity of 360 km/hr. Find the rate at which it is receding from fixed point on the ground which it passed over 4 minutes ago.
 - b) If $|\vec{p} + \vec{q}| = |\vec{p} \vec{q}|$, then prove that \vec{p} is perpendicular to \vec{q} . [2]

6.	a) Write the	integral of	$\int \frac{1}{\sqrt{x^2 - a^2}} \mathrm{dx}.$	[1]
6.	a) Write the	integral of	$\int \frac{1}{\sqrt{x^2 - a^2}} \mathrm{dx}.$	[1

b) Write a differential equation in a linear form. [1]

c) Write any three in-determinante form of function. [1]

d) What does $\frac{\Delta y}{\Delta x}$ represent? [1]

e) Reduce the expression $\frac{3}{(x+4)(x-2)}$ into partial fraction. [1]

17. Raw materials used in production of a synthetic fiver is stored in a place that has no humidity control measurement of the humidity (relative) and the moisture content of samples of the raw materials (both in percentages) of 7 days yielded the following results.

Humidity (x) 46 53 37 42 34 29 60

Moisture content (y) 12 14 11 13 10 8 17

a) Find the coefficient correlation [2]

b) Predict the moisture content when the relative humidity is 40 percent. [3]

18. a) Evaluate $\int \frac{SinA}{\sqrt{1+sinA}} dA$ [3]

b) Solve: $\frac{dy}{dx} = e^{x-y} + x^3 \cdot e^{-y}$ [2]

19. a) A Particle is projected with a velocity u . If the greatest height attained by the particle be H, prove that the range R on the horizontal plane through the point of projection is

$$R = 4\sqrt{H(\frac{u^2}{2g} - H)}$$
 [3]

b) O is the orthocenter of triangle PQR. Forces X, Y, Z acting along OP, OQ, OR are in equilibrium. Prove $\frac{x}{QR} = \frac{Y}{PR} = \frac{Z}{PQ}$ [2]

OR

- a. Solve the following system of equations by Gauss-Seidel method [2] x 4y + 6 = 0, 5x y = 27
- b. Using simplex method to maximize Z = 12x + 17y subject to $2x + 3y \le 21$, $5x + 7y \le 50$ and $x, y \ge 0$ [3]

GROUP C $[3 \times 8=24]$

20. a) From 8 gentlemen and 6 ladies a committee of 6 is to be formed. In how men ways can this be done so as to include at least 5 gentlemen. [3]

b) Using principle of mathematical induction, show that :

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
 [3]

c) Apply De-Moivre's theorem to compute $(1+i)^{10}$ [2]

21. a) Find the coordinate of the vertices and the foci of the ellipse $4x^2 + 9y^2 - 16x - 18y - 11 = 0$ [3]

b) If A = 30°, B = 45° and a = $6\sqrt{2}$ of a triangle ABC, find b and c. [2]

c) Prove by vector method that : Sin (A-B) = sinA.cos B - cos A. sinB [3]

22. a) Write uses of L-Hosital's rule with an example. [2]

b) Give an example of linear differential equation, homogenous differential equation and standard integral each. [3]

c) Define improper faction. Find the derivative of Arc $\sinh (\cosh x)$. [1+2]

THE END